1 生物特征传感器技术
通过某种原理可以测量生物特征,并将其转化成计算机可以处理的数字信号,这就是生物特征传感器的主要任务,也是生物特征识别的第一步。大部分的生物特征都是通过光学传感器如CCD 或CMOS 形成图像信号,例如人脸、指纹、虹膜、掌纹、手形、静脉等。但是虹膜和静脉图像需要主动的红外光源才可以得到细节清晰的个性特征。由于外加主动光源能够克服可见光线变化对生物特征的影响,所以最近在人脸识别领域有研究人员设计了红外成像设备,来克服人脸模式随光照变化的类内差异,从而大幅度提高了人脸识别的精度。
为了提高生物识别系统的易用性、舒适性和用户的接受程度,同时又要保证生物特征信号的质量,此外还要小巧精致、成本低廉,生物特征传感器技术还有许多需要改进的地方。例如最近已经有通过非接触方式采集的3D 指纹传感器技术。生物特征传感器的核心技术包括:
智能定位技术
生物特征获取装置必须让用户和识别系统处于合适的距离和位置才可以捕获合格的生物特征信号。最理想的方案是让采集装置自动判别用户的位置,然后主动调节光学系统或者直接通过机械装置移动采集设备,这样就可以降低对用户的要求,采集方式更加智能化和人性化。
人机接口设计
生物特征采集系统应该“以人为本”,符合人体工学,设计生物特征和采集装置之间的交互接口。通过开发用户自定位技术让用户在某种方式的导引下很快找到合适的成像位置。例如现有的人脸识别和虹膜识别系统中通常在采集装置上安装一面镜子或者设置一个注视点或者设计比较巧妙的光学系统,用户通过视觉或者语音反馈就可以比较迅速地找到适合成像的位置。
光学系统设计
主要是光学镜头组的设计和加工,如果需要主动光源照明的话还要在镜头上安装滤光片,根据成像距离设置主动光源。
机械控制技术
包括自动变焦的电控单元设计、配合用户的身高和距离进行程序调节的机械单元设计等。
生物特征传感器的核心技术还包括传感器电路设计; 信号传输与通信技术; 防撬报警技术以及和其他技术的有机结合。
2 活体检测技术
为了防止恶意者伪造和窃取他人的生物特征用于身份认证,生物识别系统必须具有活体检测功能,即判别向系统提交的生物特征是否来自有生命的个体。一般生物特征的活体判别技术利用的是人们的生理特征,例如活体指纹检测可以基于手指的温度、排汗、导电性能等信息, 活体人脸检测可以基于头部的移动、呼吸、红眼效应等信息,活体虹膜检测可以基于虹膜振颤特性、睫毛和眼皮的运动信息、瞳孔对可见光源强度的收缩扩张反应特性等。
此外,基于生物特征图像的光谱学信息也是进行活体检测的有效途径。例如打印的图像会形成有规律的纸质纹理特征,可以用频谱特征进行检测。此外,还可以通过人机互动的形式检测生物特征的活体特性; 使用多模态生物特征识别系统也可以提高伪造的难度。
从现有的技术水平看,活体检测功能一直是生物识别系统的薄弱环节,已经有研究人员使用伪造的指纹和人脸攻破了现有的系统,引发了有些用户对生物识别技术的信任危机。所以活体检测技术将是生物识别系统进入高端安全应用的最大瓶颈。
3 生物特征信号质量评价技术
在自动身份识别系统中,生物特征一般是以连续的视频流或者音频流的形式进行获取。由于有效的生物特征采集范围总是有限的,再加上人的运动、姿态变化等因素,传输到计算机的生物特征信号大部分都是不合格的。而高质量的生物特征信号是进行特征表达和身份识别的基础,低质量的生物特征信号有可能引起错误接收或错误拒绝,降低系统的稳定性和鲁棒性(系统的健壮性),浪费大量的计算资源在无效的生物特征信号处理上。
基于上述分析,我们可以从三个方面努力排除低质量生物特征信号对识别性能的影响:
■ 研究高性能的成像硬件平台;
■ 提高识别算法的鲁棒性;
■ 在生物识别系统中引入智能的质量评价软件模块,只容许较高质量的生物特征信号进行注册或识别。
在这些措施中设计有效的质量评价算法最实际。因为再鲁棒的识别算法能够接受的信号质量也是有限的。虽然已经有高性能的生物特征获取装置面世,但是价格十分昂贵,也解决不了根本问题。所以研究生物特征的质量评价算法对于识别系统性能的提高具有重要意义。
生物特征信号的质量评价可看做一个两类模式识别问题——将采集到的生物特征分为合格和不合格两种情况。如果要对合格信号量化打分,还要将评价指标定量化。生物特征信号的质量评价问题是一个比较困难的问题,因为造成特征信号质量差的原因千差万别,即负样本的种类太多,不胜枚举,很难设计一个分类器将所有的正负样本区分开。需要通过质量评价来过滤的低质量生物特征一般包括存在离焦模糊或运动模糊的图像,信噪比太低的信号,遮挡的图像等。一般可以从空域和频域两个角度出发去设计质量评价算法。
从产品实用化的角度考虑,生物识别系统现在遇到的最大的瓶颈之一就是信号的质量评价。一方面,为了拓宽系统的适用范围,提高产品的易用性,对用户更友好,为此,研究人员希望系统能在生物特征质量要求较低的条件下运作,但是同时又要求系统能有稳定的高精度。为了平衡这个矛盾,设计“稳、快、准”的质量评价算法将是必由之路。
4 生物信号的定位与分割技术 经过处理后的掌纹纹路更清晰了
从生物特征获取装置采集得到的原始信号一般不仅包括生物特征本身,还包括背景信息,例如原始的虹膜图像中包括虹膜、瞳孔、巩膜、眼皮和睫毛等多个区域,真正能有效鉴别人们身份的图像内容也就在虹膜区域。所以必须从原始信号中分割出感兴趣内容进行特征提取。定位和分割算法一般都是基于生物特征在图像结构和信号分布方面的先验知识。例如人脸检测就是要从图像中找到并定位人脸区域,一直是计算机视觉领域的研究热点。
2001年美国的Viola 和Jones提出了用易于计算的Harr 小波特征来描述人脸模式,用AdaBoost来训练人脸检测分类器,取得了人脸检测领域的突破性进展,实现了实时检测视频中的人脸图像,而且准确率也非常高。这个方法对计算机视觉和生物识别领域的影响都很大,现在商业化的人脸识别系统基本上都是使用这种人脸检测方法或者其变种。而且这种通过机器学习训练弱分类器的方法也被推广到了一般视觉对象的检测和识别上。指纹的分割算法一般是基于指纹区域和背景区域的图像块灰度方差的差异特性; 虹膜的定位主要利用瞳孔/虹膜/巩膜存在较大的灰度跳变并且成圆形的边缘分布结构特征; 掌纹的定位一般是基于手指之间的参考点来构建参考坐标系。
5 生物特征信号增强技术
得到了分割后的特征区域后,有的生物特征识别方法需要在特征提取前对感兴趣区域进行增强,主要目的包括去噪和凸显特征内容。例如人脸和虹膜图像一般用直方图均衡化的方法增强图像信息的对比度; 指纹一般用频域的方法得到脊线分布的频率和方向特征后进行纹路增强; 对于比较模糊的生物特征信号,可以考虑使用超分辨率的方法或者逆向滤波的方法进行增强。
6 生物特征信号的校准技术
为了克服不同时刻采集的生物特征信号之间的平移、尺度和旋转变换,需要将参与比对的两个生物特征进行对齐。有的生物特征校准在特征提取之前完成,例如常用主动形状模型(Active Shape Model)和主动表观模型(Active Appearance Model)进行人脸对齐; 有的生物特征校准的过程就是特征匹配的过程。生物特征信号的校准结果对于识别精度的影响很大,所以也有学者认为生物特征识别最重要的问题是校准技术。
7 生物特征表达与抽取技术
对于生物特征识别
|